首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:p75 neurotrophin receptor regulates glucose homeostasis and insulin sensitivity
  • 本地全文:下载
  • 作者:Bernat Baeza-Raja ; Pingping Li ; Natacha Le Moan
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2012
  • 卷号:109
  • 期号:15
  • 页码:5838-5843
  • DOI:10.1073/pnas.1103638109
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Insulin resistance is a key factor in the etiology of type 2 diabetes. Insulin-stimulated glucose uptake is mediated by the glucose transporter 4 (GLUT4), which is expressed mainly in skeletal muscle and adipose tissue. Insulin-stimulated translocation of GLUT4 from its intracellular compartment to the plasma membrane is regulated by small guanosine triphosphate hydrolases (GTPases) and is essential for the maintenance of normal glucose homeostasis. Here we show that the p75 neurotrophin receptor (p75NTR) is a regulator of glucose uptake and insulin resistance. p75NTR knockout mice show increased insulin sensitivity on normal chow diet, independent of changes in body weight. Euglycemic-hyperinsulinemic clamp studies demonstrate that deletion of the p75NTR gene increases the insulin-stimulated glucose disposal rate and suppression of hepatic glucose production. Genetic depletion or shRNA knockdown of p75NTR in adipocytes or myoblasts increases insulin-stimulated glucose uptake and GLUT4 translocation. Conversely, overexpression of p75NTR in adipocytes decreases insulin-stimulated glucose transport. In adipocytes, p75NTR forms a complex with the Rab5 family GTPases Rab5 and Rab31 that regulate GLUT4 trafficking. Rab5 and Rab31 directly interact with p75NTR primarily via helix 4 of the p75NTR death domain. Adipocytes from p75NTR knockout mice show increased Rab5 and decreased Rab31 activities, and dominant negative Rab5 rescues the increase in glucose uptake seen in p75NTR knockout adipocytes. Our results identify p75NTR as a unique player in glucose metabolism and suggest that signaling from p75NTR to Rab5 family GTPases may represent a unique therapeutic target for insulin resistance and diabetes.
  • 关键词:3T3L1 ; brain-derived neurotrophic factor ; Rho ; peptide array ; obesity
国家哲学社会科学文献中心版权所有