首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Induction of microRNA-155 is TLR- and type IV secretion system-dependent in macrophages and inhibits DNA-damage induced apoptosis
  • 本地全文:下载
  • 作者:Manuel Koch ; Hans-Joachim Mollenkopf ; Uwe Klemm
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2012
  • 卷号:109
  • 期号:19
  • 页码:E1153-E1162
  • DOI:10.1073/pnas.1116125109
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Helicobacter pylori is a gastric pathogen responsible for a high disease burden worldwide. Deregulated inflammatory responses, possibly involving macrophages, are implicated in H. pylori-induced pathology, and microRNAs, such as miR-155, have recently emerged as crucial regulators of innate immunity and inflammatory responses. miR-155 is regulated by Toll-like receptor (TLR) ligands in monocyte-derived cells and has been shown to be induced in macrophages during H. pylori infection. Here, we investigated the regulation of miR-155 expression in primary murine bone marrow-derived macrophages (BMMs) during H. pylori infection and examined the downstream mRNA targets of this microRNA using microarray analysis. We report TLR2/4- and NOD1/2-independent up-regulation of miR-155, which was found to be dependent on the major H. pylori pathogenicity determinant, the type IV secretion system (T4SS). miR-155 expression was dependent on NF-{kappa}B signaling but was independent of CagA. Microarray analysis identified known gene targets of miR-155 in BMMs during H. pylori infection that are proapoptotic. We also identified and validated miR-155 binding sites in the 3' UTRs of the targets, Tspan14, Lpin1, and Pmaip1. We observed that H. pylori-infected miR-155-/- BMMs were significantly more susceptible to cisplatin DNA damage-induced apoptosis than were wild-type BMMs. Thus, our data suggest a function for the prototypical H. pylori pathogenicity factor, the T4SS, in the up-regulation of miR-155 in BMMs. We propose the antiapoptotic effects of miR-155 could enhance macrophage resistance to apoptosis induced by DNA damage during H. pylori infection.
  • 关键词:pathogen-associated molecular pattern ; mucosal immunity
国家哲学社会科学文献中心版权所有