期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1988
卷号:85
期号:21
页码:7897-7901
DOI:10.1073/pnas.85.21.7897
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Total chemical synthesis of analog proteins was used to examine the requirement for specific disulfide bridges for the biological activity of interleukin 3 (IL-3), a growth factor that stimulates multiple lineages of hemopoietic cells. Four structural analogs of the mature, 140 amino acid murine IL-3 molecule were synthesized in which specific cysteine residues were replaced by alanines. In a quantitative IL-3 assay, based on [3H]thymidine incorporation into factor-dependent cells, the IL-3 analog with alanines substituted for all four cysteines--i.e., [Ala17,79,80,140]IL-3--had 1/500th as much activity as the molecule synthesized according to the native sequence. The two analogs [Cys17,79,Ala80,140]IL-3 and [Cys17,140,Ala79,80]IL-3 had similarly low activity, whereas the [Cys17,80,Ala79,140]IL-3 analog had 2000-fold higher activity than these three analogs, and 3-fold higher than the molecule with the native sequence. This shows that in IL-3 a single disulfide bridge, between cysteines 17 and 80, is required for biological activity that approximates physiological levels. This disulfide probably stabilizes the tertiary structure of the protein to give a conformation that is optimal for function.