首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Early persistent activation of sperm K+ channels by the egg peptide speract
  • 本地全文:下载
  • 作者:D F Babcock ; M M Bosma ; D E Battaglia
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1992
  • 卷号:89
  • 期号:13
  • 页码:6001-6005
  • DOI:10.1073/pnas.89.13.6001
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Transduction by sperm of the instructive signal provided by the egg peptide speract involves rapid, complex changes in internal ion and cyclic nucleotide content. Here, investigations of hypotonically swollen sperm provide insight into the underlying processes and identify K+ channel activation as an initial ionic event in gamete recognition. A sustained hyperpolarization of swollen sperm is promoted by less than 2.5 pM speract and is followed (with greater than 100 pM speract) by transient repolarization and (with greater than 10 nM speract) by depolarization that is dependent on external Ca2+. Monophasic increases in pHi are produced only by greater than 25 pM speract, indicating that hyperpolarization may not directly promote alkalinization. Increased K(+)-selective (K+ greater than Rb+ greater than Cs+ greater than Na+) membrane permeability is found after all speract greater than 2.5 pM, suggesting that hyperpolarization results from persistent activation of K+ channels and that repolarization has a different ionic basis. Supporting this contention, the K+ channel blocker tetraethylammonium (20 mM) inhibits the increased K+ permeability that follows treatment of swollen sperm (and of sperm in seawater) with 2.5 pM speract. Such induced activation of K+ channels is observed in patch-clamped swollen sperm examined in the cell-attached configuration, upon application of 5-50 pM speract to the bath medium. The efficacy of externally applied speract and its potency indicate that activation is indirect and probably involves an as yet unidentified diffusible mediator whose production is promoted by speract at concentrations 0.01-0.001 times those predicted from reported estimates of the Kd for the known speract receptor.
国家哲学社会科学文献中心版权所有