期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1994
卷号:91
期号:21
页码:10188-10192
DOI:10.1073/pnas.91.21.10188
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Sensory rhodopsin I (sR-I) is a phototaxis receptor in halobacteria, which is closely related to the light-driven proton pump bacteriorhodopsin and the chloride pump halorhodopsin found in the same organisms. The three pigments undergo similar cyclic photoreactions, in spite of their different functions. In intact cells or isolated membranes sR-I is complexed with protein HtrI, the next link in the signal transduction chain, and does not function as an electrogenic ion pump. However, illumination of sR-I in membranes lacking HtrI causes pH changes in the medium, and its photoreaction kinetics become pH-dependent. We show here that in closed vesicles, near neutral pH it functions as an electrogenic proton pump capable of generating at least -80 mV transmembrane potential. The action spectrum shows a maximum 37 nm below the 587-nm absorption maximum of the native pigment. This apparent discrepancy occurs because the 587-nm form of HtrI-free sR-I exists in a pH-dependent equilibrium with a 550-nm absorbing species generated through deprotonation of one group with a pKa of 7.2, which we have tentatively identified as Asp-76. We interpret the results in terms of a general model for ion translocation by the bacterial rhodopsins.