期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1994
卷号:91
期号:8
页码:3102-3106
DOI:10.1073/pnas.91.8.3102
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Lactobacillus brevis takes up lactose and the nonmetabolizable lactose analogue thiomethyl beta-galactoside (TMG) by a permease-catalyzed lactose/H+ symport mechanism. Earlier studies have shown that TMG, previously accumulated in L. brevis cells, rapidly effluxes from the cells upon addition of glucose, and that glucose inhibits further uptake of TMG. We have developed a vesicular system to analyze this regulatory mechanism and have used electroporation to shock proteins and membrane-impermeant metabolites into the vesicles. Uptake of TMG was dependent on an energy source, effectively provided by intravesicular ATP or extravesicular arginine. TMG uptake into these vesicles was not inhibited, and preaccumulated TMG did not efflux from them upon addition of glucose. Intravesicular but not extravesicular wild-type phosphocarrier protein HPr of Bacillus subtilis restored regulation. Glucose could be replaced by intravesicular (but not extravesicular) fructose 1,6-bisphosphate, gluconate 6-phosphate, or 2-phosphoglycerate, but not by other phosphorylated metabolites, in agreement with the allosteric activating effects of these compounds on HPr(Ser) kinase measured in vitro. Intravesicular serine-46-->alanine mutant HPr cold not promote regulation of lactose permease activity when electroporated into the vesicles with or without glucose or the various phosphorylated metabolites, but the serine-46-->aspartate mutant HPr promoted regulation, even in the absence of glucose or a metabolite. HPr(Ser-P) appears to convert the lactose/H+ symporter into a sugar uniporter. These results establish that HPr serine phosphorylation by the ATP-dependent metabolite-activated HPr kinase regulates lactose permease activity in L. brevis. A direct allosteric mechanism is proposed.