期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1995
卷号:92
期号:10
页码:4447-4451
DOI:10.1073/pnas.92.10.4447
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Mutations in genes encoding membrane proteins have been associated with cell death of unknown cause from invertebrate development to human degenerative diseases. A point mutation in the gene for myelin proteolipid protein (PLP) underlies oligodendrocyte death and dysmyelination in jimpy mice, an accurate model for Pelizaeus-Merzbacher disease. To distinguish the loss of PLP function from other effects of the misfolded protein, we took advantage of the X chromosomal linkage of the gene and have complemented jimpy with a wild-type PLP transgene. In this artificial heterozygous situation, the jimpy mutation emerged as genetically dominant. At the cellular level oligodendrocytes showed little increase in survival although endogenous PLP gene and autosomal transgene were truly coexpressed. In surviving oligodendrocytes, wild-type PLP was functional and immunodetectable in myelin. Moreover, compacted myelin sheaths regained their normal periodicity. This strongly suggests that, despite the presence of functional wild-type PLP, misfolded jimpy PLP is by itself the primary cause of abnormal oligodendrocyte death.