首页    期刊浏览 2025年04月30日 星期三
登录注册

文章基本信息

  • 标题:Using ubiquitin to follow the metabolic fate of a protein
  • 本地全文:下载
  • 作者:F Lévy ; N Johnsson ; T Rümenapf
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1996
  • 卷号:93
  • 期号:10
  • 页码:4907-4912
  • DOI:10.1073/pnas.93.10.4907
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:We describe a method that can be used to produce equimolar amounts of two or more specific proteins in a cell. In this approach, termed the ubiquitin/protein/reference (UPR) technique, a reference protein and a protein of interest are synthesized as a polyprotein separated by a ubiquitin moiety. This tripartite fusion is cleaved, cotranslationally or nearly so, by ubiquitin-specific processing proteases after the last residue of ubiquitin, producing equimolar amounts of the protein of interest and the reference protein bearing a C-terminal ubiquitin moiety. In applications such as pulse-chase analysis, the UPR technique can compensate for the scatter of immunoprecipitation yields, sample volumes, and other sources of sample-to-sample variation. In particular, this method allows a direct comparison of proteins' metabolic stabilities from the pulse data alone. We used UPR to examine the N-end rule (a relation between the in vivo half-life of a protein and the identity of its N-terminal residue) in L cells, a mouse cell line. The increased accuracy afforded by the UPR technique underscores insufficiency of the current "half-life" terminology, because in vivo degradation of many proteins deviates from first-order kinetics. We consider this problem and discuss other applications of UPR.
国家哲学社会科学文献中心版权所有