首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Functional complementation of xeroderma pigmentosum complementation group E by replication protein A in an in vitro system
  • 本地全文:下载
  • 作者:A Kazantsev ; D Mu ; A F Nichols
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1996
  • 卷号:93
  • 期号:10
  • 页码:5014-5018
  • DOI:10.1073/pnas.93.10.5014
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Xeroderma pigmentosum (XP) is caused by a defect in nucleotide excision repair. Patients in the complementation group E (XP-E) have the mildest form of the disease and the highest level of residual repair activity. About 20% of the cell strains derived from XP-E patients lack a damaged DNA-binding protein (DDB) activity that binds to ultraviolet-induced (6-4) photoproducts with high affinity. We report here that cell-free extracts prepared from XP-E cell strains that either lacked or contained DDB activity were severely defective in excising DNA damage including (6-4) photoproducts. However, this excision activity defect was not restored by addition of purified DDB that, in fact, inhibited removal of (6-4) photoproducts by the human excision nuclease reconstituted from purified proteins. Extensive purification of correcting activity from HeLa cells revealed that the correcting activity is inseparable from the human replication/repair protein A [RPA (also known as human single stranded DNA binding protein, HSSB)]. Indeed, supplementing XP-E extracts with recombinant human RPA purified from Escherichia coli restored excision activity. However, no mutation was found in the genes encoding the three subunits of RPA in an XP-E (DDB-) cell line. It is concluded that RPA functionally complements XP-E extracts in vitro, but it is not genetically altered in XP-E patients.
国家哲学社会科学文献中心版权所有