首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:An autocatalytic mechanism of protein nitrosylation
  • 本地全文:下载
  • 作者:Andrey Nedospasov ; Ruslan Rafikov ; Natalya Beda
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2000
  • 卷号:97
  • 期号:25
  • 页码:13543-13548
  • DOI:10.1073/pnas.250398197
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Nitros(yl)ation is a widespread protein modification that occurs during many physiological and pathological processes. It can alter both the activity and function of a protein. Nitric oxide (*NO) has been implicated in this process, but its mechanism remained uncertain. *NO is unable to react with nucleophiles under oxygen-free conditions, suggesting that its higher oxides, such as N2O3, were actually nitrosylating agents. However, low concentrations and short lifespans of these species in vivo raise the question of how they could efficiently locate target proteins. Here we demonstrate that at physiological concentrations of *NO, N2O3 forms inside protein-hydrophobic cores and causes nitrosylation within the protein interior. This mechanism of protein modification has not been characterized, because all previously described mechanisms (e.g., phosphorylation, acetylation, ADP-ribosylation, etc.) occur via attack on a protein by an external modification agent. Oxidation of *NO to N2O3 is facilitated by micellar catalysis, which is mediated by the hydrophobic phase of proteins. Thus, a target protein seems to be a catalyst of its own nitrosylation. One of the applications of this finding, as we report here, is the design of specific hydrophobic compounds whose cooperation with *NO and O2 allows the rapid inactivation of target enzymes to occur.
国家哲学社会科学文献中心版权所有