期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2001
卷号:98
期号:8
页码:4305-4310
DOI:10.1073/pnas.071047798
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Paleontological data for the diversity of marine animals and land plants are shown to correlate significantly with a concurrent measure of stable carbon isotope fractionation for approximately the last 400 million years. The correlations can be deduced from the assumption that increasing plant diversity led to increasing chemical weathering of rocks and therefore an increasing flux of carbon from the atmosphere to rocks, and nutrients from the continents to the oceans. The CO2 concentration dependence of photosynthetic carbon isotope fractionation then indicates that the diversification of land plants led to decreasing CO2 levels, while the diversification of marine animals derived from increasing nutrient availability. Under the explicit assumption that global biodiversity grows with global biomass, the conservation of carbon shows that the long-term fluctuations of CO2 levels were dominated by complementary changes in the biological and fluid reservoirs of carbon, while the much larger geological reservoir remained relatively constant in size. As a consequence, the paleontological record of biodiversity provides an indirect estimate of the fluctuations of ancient CO2 levels.