首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron
  • 本地全文:下载
  • 作者:Benoît D'Autréaux ; Danièle Touati ; Beate Bersch
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2002
  • 卷号:99
  • 期号:26
  • 页码:16619-16624
  • DOI:10.1073/pnas.252591299
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Ferric uptake regulation protein (Fur) is a bacterial global regulator that uses iron as a cofactor to bind to specific DNA sequences. The function of Fur is not limited to iron homeostasis. A wide variety of genes involved in various mechanisms such as oxidative and acid stresses are under Fur control. Flavohemoglobin (Hmp) is an NO-detoxifying enzyme induced by NO and nitrosothiol compounds. Fur recently was found to regulate hmp in Salmonella typhimurium, and in Escherichia coli, the iron-chelating agent 2,2'-dipyridyl induces hmp expression. We now establish direct inhibition of E. coli Fur activity by NO. By using chromosomal Fur-regulated lacZ reporter fusion in E. coli, Fur activity is switched off by NO at micromolar concentration. In vitro Fur DNA-binding activity, as measured by protection of restriction site in aerobactin promoter, is directly sensitive to NO. NO reacts with FeII in purified FeFur protein to form a S = 1/2 low-spin FeFur-NO complex with a g = 2.03 EPR signal. Appearance of the same EPR signal in NO-treated cells links nitrosylation of the iron with Fur inhibition. The nitrosylated Fur protein is still a dimer and is stable in anaerobiosis but slowly decays in air. This inhibition probably arises from a conformational switch, leading to an inactive dimeric protein. These data establish a link between control of iron metabolism and the response to NO effects.
国家哲学社会科学文献中心版权所有