期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2003
卷号:100
期号:2
页码:544-549
DOI:10.1073/pnas.0235695100
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:In anautogenous mosquitoes, egg maturation requires a blood meal. As a consequence, mosquitoes are vectors of numerous devastating human diseases. Blood feeding triggers a 20-hydroxyecdysone (20E) hormonal cascade, which activates yolk protein precursor (YPP) genes in the female fat body, an insect metabolic tissue. An important adaptation for anautogeny is the previtellogenic arrest preventing activation of YPP genes. Equally essential is termination of their expression, so that another arrest is achieved after a batch of eggs is laid. Here, we report that mosquito Seven-up (AaSvp), a chicken ovalbumin upstream promoter-transcription factor homologue, is involved in regulating the cyclicity of vitellogenic ecdysteroid-mediated signaling through heterodimerization with a retinoid X receptor homologue Ultraspiracle (USP), the obligatory functional ecdysteroid receptor (EcR) partner. AaSvp inhibits 20E-dependent activation of the vitellogenin (Vg) gene in transfection assays. Two-hybrid and GST pull-down analyses demonstrate that in vitro AaSvp interacts with both AaUSP and AaEcR. However, the coimmunoprecipitation using fat body nuclear extracts reveals that at 33-36 h postblood meal, when the 20E titer sharply declines and YPP gene expression ceases, AaSvp replaces AaEcR in USP heterodimers. The chromatin immunoprecipitation assay indicates that protein-protein interaction rather than binding competition for the Vg ecdysteroid response element accounts for the inhibition of Vg expression by AaSvp.