期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2003
卷号:100
期号:2
页码:616-621
DOI:10.1073/pnas.0236176100
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:UV light provokes DNA lesions that interfere with replication and transcription. These lesions may compromise cell viability and usually are removed by nucleotide excision repair (NER). In humans, inactivation of NER is associated with three rare autosomal recessive inherited disorders: xeroderma pigmentosum (XP), Cockayne syndrome, and trichothiodystrophy. The NER earliest step is lesion recognition by a complex formed by XPC and HHR23B proteins. In a subsequent step, XPA protein becomes associated to the repair complex. Here we investigate whether XPA and XPC proteins, involved in global genome repair, may contribute to a signal transduction pathway regulating the response to UVC-induced lesions. We monitored the expression of several UVC-induced genes in cells deficient in either a transduction pathway or mutated on an NER gene. Expression of the KIN17 gene is induced after UVC irradiation independently of p53 and of activating transcription factor 2. However, in human cells derived from XPA or XPC patients the UVC-induced accumulation of KIN17 RNA and protein is abolished. Our results indicate that the presence of functional XPA and XPC proteins is essential for the up-regulation of the KIN17 gene after UVC irradiation. They also show that the integrity of global genome repair is required to trigger KIN17 gene expression and probably other UVC-responsive genes.