期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2003
卷号:100
期号:2
页码:645-650
DOI:10.1073/pnas.0237086100
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Transplanted cord blood (CB) hematopoietic stem cells (HSC) and progenitor cells (HPC) can treat malignant and nonmalignant disorders. Because long-term cryopreservation is critical for CB banking and transplantation, we assessed the efficiency of recovery of viable HSC/HPC from individual CBs stored frozen for 15 yr. Average recoveries ({+/-} 1 SD) of defrosted nucleated cells, colony-forming unit-granulocyte, -macrophage (CFU-GM), burst-forming unit-erythroid (BFU-E), and colony-forming unit-granulocyte, -erythrocyte, -monocyte, and -megakaryocyte (CFU-GEMM) were, respectively, 83 {+/-} 12, 95 {+/-} 16, 84 {+/-} 25, and 85 {+/-} 25 using the same culture conditions as for prefreeze samples. Proliferative capacities of CFU-GM, BFU-E, and CFU-GEMM were intact as colonies generated respectively contained up to 22,500, 182,500, and 292,500 cells. Self-renewal of CFU-GEMM was also retained as replating efficiency of single CFU-GEMM colonies into 2{degrees} dishes was >96% and yielded 2{degrees} colonies of CFU-GM, BFU-E, and CFU-GEMM. Moreover, CD34+CD38- cells isolated by FACS after thawing yielded >250-fold ex vivo expansion of HPC. To assess HSC capability, defrosts from single collections were bead-separated into CD34+ cells and infused into sublethally irradiated nonobese diabetic (NOD)/severe combined immunodeficient (SCID) mice. CD45+ human cell engraftment with multilineage phenotypes was detected in mice after 11-13 wk; engrafting levels were comparable to that reported with fresh CB. Thus, immature human CB cells with high proliferative, replating, ex vivo expansion and mouse NOD/SCID engrafting ability can be stored frozen for >15 yr, can be efficiently retrieved, and most likely remain effective for clinical transplantation.