期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2003
卷号:100
期号:3
页码:782-787
DOI:10.1073/pnas.242741499
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Diverse scientific disciplines ranging from materials science to catalysis to biomolecular dynamics to climate modeling involve nonlinear interactions across a large range of physically significant length scales. Here a class of coarse-grained stochastic processes and corresponding Monte Carlo simulation methods, describing computationally feasible mesoscopic length scales, are derived directly from microscopic lattice systems. It is demonstrated below that the coarse-grained stochastic models can capture large-scale structures while retaining significant microscopic information. The requirement of detailed balance is used as a systematic design principle to guarantee correct noise fluctuations for the coarse-grained model. The coarse-grained stochastic algorithms provide large computational savings without increasing programming complexity or computer time per executive event compared to microscopic Monte Carlo simulations.