期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2003
卷号:100
期号:6
页码:3251-3256
DOI:10.1073/pnas.2627983100
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Replicative senescence is the state of irreversible proliferative arrest that occurs as a concomitant of progressive telomere shortening. By using cDNA microarrays and the GABRIEL system of computer programs to apply domain-specific and procedural knowledge for data analysis, we investigated global changes in gene transcription occurring during replicative senescence in human fibroblasts and mammary epithelial cells (HMECs). Here we report the identification of transcriptional "fingerprints" unique to senescence, the finding that gene expression perturbations during senescence differ greatly in fibroblasts and HMECs, and the discovery that despite the disparate nature of the chromosomal loci affected by senescence in fibroblasts and HMECs, the up-regulated loci in both types of cells show physical clustering. This clustering, which contrasts with the random distribution of genes down-regulated during senescence or up-regulated during reversible proliferative arrest (i.e., quiescence), supports the view that replicative senescence is associated with alteration of chromatin structure.