期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2003
卷号:100
期号:7
页码:3605-3610
DOI:10.1073/pnas.0637711100
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Metalloneurochemistry is the study of metal ion function in the brain and nervous system at the molecular level. Research in this area is exemplified through discussion of several forefront areas where significant progress has been made in recent years. The structure and function of ion channels have been elucidated through high-resolution x-ray structural work on the bacterial K+ ion channel. Selection of potassium over sodium ions is achieved by taking advantage of key principles of coordination chemistry. The role of calcium ions in neuronal signal transduction is effected by several Ca2+-binding protein such as calmodulin, calcineurin, and synaptotagmin. Structural changes in response to calcium ion concentrations allow these proteins to function in memory formation and other neurochemical roles. Metallochaperones help to achieve metal ion homeostasis and thus prevent neurological diseases because of metal ion imbalance. Much detailed chemical information about these systems has become available recently. Zinc is another important metal ion in neuroscience. Its concentration in brain is in part controlled by metallothionein, and zinc is released in the hippocampus at glutamatergic synapses. New fluorescent sensors have become available to help track such zinc release.