期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2003
卷号:100
期号:7
页码:3847-3852
DOI:10.1073/pnas.0230490100
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Identifying neurons and their spatial coordinates in images of the cerebral cortex is a necessary step in the quantitative analysis of spatial organization in the brain. This is especially important in the study of Alzheimer's disease (AD), in which spatial neuronal organization and relationships are highly disrupted because of neuronal loss. To automate neuron recognition by using high-resolution confocal microscope images from human brain tissue, we propose a recognition method based on statistical physics that consists of image preprocessing, parallel image segmentation, and cluster selection on the basis of shape, optical density, and size. We segment a preprocessed digital image into clusters by applying Monte Carlo simulations of a q-state inhomogeneous Potts model. We then select the range of Potts segmentation parameters to yield an ideal recognition of simplified objects in the test image. We apply our parallel segmentation method to control individuals and to AD patients and achieve recognition of 98% (for a control) and 93% (for an AD patient), with at most 3% false clusters.