期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2003
卷号:100
期号:7
页码:3743-3747
DOI:10.1073/pnas.0737062100
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Ionizing radiation damages DNA in several ways, including through formation of a single-nucleoside gap in one DNA strand. We have developed a two-dimensional gel electrophoresis method to investigate the effect of a strand gap on DNA structure. We generate a library of gapped DNA molecules by treating a DNA restriction fragment with the hydroxyl radical, generated by the reaction of Fe(II) EDTA with hydrogen peroxide. The DNA molecule studied contains a fixed bend produced by a set of phased adenine tracts. The A-tract bend serves as a reference bend for investigating the conformational nature of a strand gap. In the first electrophoretic dimension, a bent DNA molecule that has been treated with the hydroxyl radical is electrophoresed on a native gel. Smearing of the band on the native gel indicates that the library of gapped DNA molecules contains a variety of DNA conformations. In the second electrophoretic dimension, gapped DNA molecules having different native gel mobilities are electrophoresed on separate lanes of a denaturing gel to reveal how each strand gap affects the native gel mobility (and thus shape) of the DNA. Our results demonstrate that a single-nucleoside gap in a DNA duplex leads to an anisotropic, directional bend in the DNA helix axis. The implications of our findings for recognition of this lesion by DNA repair proteins are discussed.