期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2001
卷号:98
期号:25
页码:14509-14511
DOI:10.1073/pnas.241391498
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:To date, all altered patterns of seasonal interactions observed in insects, birds, amphibians, and plants associated with global warming during the latter half of the 20th century are explicable as variable expressions of plastic phenotypes. Over the last 30 years, the genetically controlled photoperiodic response of the pitcher-plant mosquito, Wyeomyia smithii, has shifted toward shorter, more southern daylengths as growing seasons have become longer. This shift is detectable over a time interval as short as 5 years. Faster evolutionary response has occurred in northern populations where selection is stronger and genetic variation is greater than in southern populations. W. smithii represents an example of actual genetic differentiation of a seasonality trait that is consistent with an adaptive evolutionary response to recent global warming.