首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:Structure of 2C-methyl-d-erythritol 2,4- cyclodiphosphate synthase: An essential enzyme for isoprenoid biosynthesis and target for antimicrobial drug development
  • 本地全文:下载
  • 作者:Lauris E. Kemp ; Charles S. Bond ; William N. Hunter
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2002
  • 卷号:99
  • 期号:10
  • 页码:6591-6596
  • DOI:10.1073/pnas.102679799
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The crystal structure of the zinc enzyme Escherichia coli 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase in complex with cytidine 5'-diphosphate and Mn2+ has been determined to 1.8-A resolution. This enzyme is essential in E. coli and participates in the nonmevalonate pathway of isoprenoid biosynthesis, a critical pathway present in some bacterial and apicomplexans but distinct from that used by mammals. Our analysis reveals a homotrimer, built around a {beta} prism, carrying three active sites, each of which is formed in a cleft between pairs of subunits. Residues from two subunits recognize and bind the nucleotide in an active site that contains a Zn2+ with tetrahedral coordination. A Mn2+, with octahedral geometry, is positioned between the and {beta} phosphates acting in concert with the Zn2+ to align and polarize the substrate for catalysis. A high degree of sequence conservation for the enzymes from E. coli, Plasmodium falciparum, and Mycobacterium tuberculosis suggests similarities in secondary structure, subunit fold, quaternary structure, and active sites. Our model will therefore serve as a template to facilitate the structure-based design of potential antimicrobial agents targeting two of the most serious human diseases, tuberculosis and malaria.
  • 关键词:zinc enzyme| Escherichia coli | Plasmodium falciparum | Mycobacterium tuberculosis
国家哲学社会科学文献中心版权所有