期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2002
卷号:99
期号:10
页码:6796-6801
DOI:10.1073/pnas.102171199
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The Clara cells are nonciliated, nonmucous, secretory cells containing characteristic peptidergic granules; they constitute up to 80% of the epithelial cell population of the distal airways. Despite this exposed histotopology and abundance within the terminal airways where fluid secretion is of pivotal importance, the functional role of the Clara cells remained poorly understood. At the transcriptional, translational, and cellular levels, we provide evidence that the Clara cells are well equipped with the bioactive peptide guanylin and proteins of the cGMP-signaling system including guanylate cyclase C, cGMP-dependent protein kinase II, and cystic fibrosis transmembrane conductance regulator (CFTR) together with the two CFTR scaffolding proteins EBP50/NHERF and E3KARP/NHERF-2 that are essential for proper function of CFTR. Guanylin was localized to secretory granules underneath the apical membrane of Clara cells and was, in addition, detected in high concentrations in bronchoalveolar lavage fluid, predicting release of the peptide luminally into the bronchiolar airways. On the other hand, the guanylin-receptor guanylate cyclase C, CFTR, and proteins linked to CFTR activation and function were all confined to the adluminal membrane of Clara cells, implicating an intriguing air-side route of action of guanylin. Whole-cell patch-clamp recordings in the Clara cell line H441 revealed that guanylin activates CFTR Cl- conductance via the cGMP but not the cAMP-signaling pathway. Hence, in the critical location of distal airways in situ, the Clara cells may play the outstanding role of CFTR-dependent regulation of epithelial electrolyte/water secretion through a sophisticated paracrine/luminocrine mode of guanylin-induced CFTR activation.