期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2002
卷号:99
期号:10
页码:7021-7026
DOI:10.1073/pnas.102660199
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Insufficient oxygen and nutrient supply often restrain solid tumor growth, and the hypoxia-inducible factors (HIF) 1 and HIF-2 are key transcription regulators of phenotypic adaptation to low oxygen levels. Moreover, mouse gene disruption studies have implicated HIF-2 in embryonic regulation of tyrosine hydroxylase, a hallmark gene of the sympathetic nervous system. Neuroblastoma tumors originate from immature sympathetic cells, and therefore we investigated the effect of hypoxia on the differentiation status of human neuroblastoma cells. Hypoxia stabilized HIF-1 and HIF-2 proteins and activated the expression of known hypoxia-induced genes, such as vascular endothelial growth factor and tyrosine hydroxylase. These changes in gene expression also occurred in hypoxic regions of experimental neuroblastoma xenografts grown in mice. In contrast, hypoxia decreased the expression of several neuronal/neuroendocrine marker genes but induced genes expressed in neural crest sympathetic progenitors, for instance c-kit and Notch-1. Thus, hypoxia apparently causes dedifferentiation both in vitro and in vivo. These findings suggest a novel mechanism for selection of highly malignant tumor cells with stem-cell characteristics.