首页    期刊浏览 2025年06月01日 星期日
登录注册

文章基本信息

  • 标题:Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function
  • 本地全文:下载
  • 作者:Lorenz Gold ; Martin Lauritzen
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2002
  • 卷号:99
  • 期号:11
  • 页码:7699-7704
  • DOI:10.1073/pnas.112012499
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Functional neuroimaging in humans with acute brain damage often reveals decreases in blood flow and metabolism in areas unaffected by the lesion. This phenomenon, termed diaschisis, is presumably caused by disruption of afferent excitatory input from the lesioned area to other brain regions. By characterizing its neurophysiological basis, we used cerebellar diaschisis to study the relationship between electrical activity and blood flow during decreased neuronal activity. Here we show that focal cerebral ischemia in rats causes diaschisis in the cerebellar cortex characterized by pronounced decreases in Purkinje cell spiking activity and small decreases in cerebellar blood flow. The findings were explained by decreased excitatory input to the cerebellar cortex, i.e., deactivation, as cerebellar neuronal excitability and vascular reactivity were preserved. Functional ablation of the cerebral cortex by either spreading depression or tetrodotoxin reproduced the changes in cerebellar function with complete recovery of Purkinje cell activity and cerebellar blood flow concomitant with recovery of neocortical function. Decreases of activity involving the contralateral frontal cortex produced the largest decrease in cerebellar electrical activity and blood flow. Our data suggest that deactivation explains the decreases in blood flow and metabolism in cerebellar diaschisis observed in human neuroimaging studies. Decreases in spiking activity were 3-7 times larger than the respective decreases in flow. Therefore, under pathological conditions, neuroimaging methods based on hemodynamic signals may only show small changes, although the underlying decrease in neuronal activity is much larger.
国家哲学社会科学文献中心版权所有