首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:Cag pathogenicity island-specific responses of gastric epithelial cells to Helicobacter pylori infection
  • 本地全文:下载
  • 作者:Karen Guillemin ; Nina R. Salama ; Lucy S. Tompkins
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2002
  • 卷号:99
  • 期号:23
  • 页码:15136-15141
  • DOI:10.1073/pnas.182558799
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Helicobacter pylori infects over half the world's population and causes a wide range of diseases, including gastritis, peptic ulcer, and two forms of gastric cancer. H. pylori infection elicits a variety of phenotypic responses in cultured gastric epithelial cells, including the expression of proinflammatory genes and changes in the actin cytoskeleton. Both of these responses are mediated by the type IV secretion system (TFSS) encoded by the cag pathogenicity island (cag PAI). We used human cDNA microarrays to examine the temporal transcriptional profiles of gastric AGS cells infected with H. pylori strain G27 and a panel of isogenic mutants to dissect the contributions of various genes in the cag PAI. Infection with G27 induced expression of genes involved in the innate immune response, cell shape regulation, and signal transduction. A mutant lacking the cagA gene, which encodes an effector molecule secreted by the TFSS and required for the host cell cytoskeletal response, induced the expression of fewer cytoskeletal genes. A mutant lacking cagE, which encodes a structural component of the TFSS, failed to up-regulate a superset of host genes, including the cagA-dependent genes, and many of the immune response genes. A mutant lacking the entire cag PAI failed to induce both the cagE-dependent genes and several transiently expressed cagE independent genes. Host cell transcriptional profiling of infection with isogenic strains offered a detailed molecular picture of H. pylori infection and provided insight into potential targets of individual virulence determinants such as tyrosine kinase and Rho GTPase signaling molecules.
国家哲学社会科学文献中心版权所有