期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2002
卷号:99
期号:24
页码:15649-15654
DOI:10.1073/pnas.202607599
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The breast cancer resistance protein (BCRP/ABCG2) is a member of the ATP-binding cassette family of drug transporters and confers resistance to various anticancer drugs. We show here that mice lacking Bcrp1/Abcg2 become extremely sensitive to the dietary chlorophyll-breakdown product pheophorbide a, resulting in severe, sometimes lethal phototoxic lesions on light-exposed skin. Pheophorbide a occurs in various plant-derived foods and food supplements. Bcrp1 transports pheophorbide a and is highly efficient in limiting its uptake from ingested food. Bcrp1-/- mice also displayed a previously unknown type of protoporphyria. Erythrocyte levels of the heme precursor and phototoxin protoporphyrin IX, which is structurally related to pheophorbide a, were increased 10-fold. Transplantation with wild-type bone marrow cured the protoporphyria and reduced the phototoxin sensitivity of Bcrp1-/- mice. These results indicate that humans or animals with low or absent BCRP activity may be at increased risk for developing protoporphyria and diet-dependent phototoxicity and provide a striking illustration of the importance of drug transporters in protection from toxicity of normal food constituents.