期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2002
卷号:99
期号:8
页码:4967-4971
DOI:10.1073/pnas.072695799
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The transmission of information is ubiquitous in nature and often occurs through supramolecular hydrogen bonding processes. Here we report that there is a remarkable correlation during synthesis between the efficiency of the hydrogen-bond-directed assembly of peptide-based [2]rotaxanes and the symmetry distortion of the macrocycle in the structure of the final product. It transpires that the ability of the flexible macrocycle-precursor to wrap around an unsymmetrical hydrogen bonding template affects both the reaction yield and a quantifiable measure of the symmetry distortion of the macrocycle in the product. When the yields of peptide rotaxane-forming reactions are high, so is the symmetry distortion in the macrocycle; when the yields are low, indicating a poor fit between the components, the macrocycle symmetry is relatively unaffected by the thread. Thus during a synthetic sequence, as in complex biological assembly processes, hydrogen bonding can code and transmit "information"--in this case a distortion from symmetry--between chemical entities by means of a supramolecularly driven multicomponent assembly process. If this phenomenon is general, it could have far reaching consequences for the use of supramolecular-directed reactions in organic chemistry.