首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants
  • 本地全文:下载
  • 作者:Pascal Mäser ; Yoshihiro Hosoo ; Shinobu Goshima
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2002
  • 卷号:99
  • 期号:9
  • 页码:6428-6433
  • DOI:10.1073/pnas.082123799
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Plant HKT proteins comprise a family of cation transporters together with prokaryotic KtrB, TrkH, and KdpA transporter subunits and fungal Trk proteins. These transporters contain four loop domains in one polypeptide with a proposed distant homology to K+ channel selectivity filters. Functional expression in yeast and Xenopus oocytes revealed that wheat HKT1 mediates Na+-coupled K+ transport. Arabidopsis AtHKT1, however, transports only Na+ in eukaryotic expression systems. To understand the molecular basis of this difference we constructed a series of AtHKT1/HKT1 chimeras and introduced point mutations to AtHKT1 and wheat HKT1 at positions predicted to be critical for K+ selectivity. A single-point mutation, Ser-68 to glycine, was sufficient to restore K+ permeability to AtHKT1. The reverse mutation in HKT1, Gly-91 to serine, abrogated K+ permeability. This glycine in P-loop A of AtHKT1 and HKT1 can be modeled as the first glycine of the K+ channel selectivity filter GYG motif. The importance of such filter glycines for K+ selectivity was confirmed by interconversion of Ser-88 and Gly-88 in the rice paralogues OsHKT1 and OsHKT2. Surprisingly, all HKT homologues known from dicots have a serine at the filter position in P-loop A, suggesting that these proteins function mainly as Na+ transporters in plants and that Na+/K+ symport in HKT proteins is associated with a glycine in the filter residue. These data provide experimental evidence that the glycine residues in selectivity filters of HKT proteins are structurally related to those of K+ channels.
国家哲学社会科学文献中心版权所有