期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2003
卷号:100
期号:11
页码:6313-6318
DOI:10.1073/pnas.0937490100
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:In the study of the spectra of power-law graphs, there are basically two competing approaches. One is to prove analogues of Wigner's semicircle law, whereas the other predicts that the eigenvalues follow a power-law distribution. Although the semicircle law and the power law have nothing in common, we will show that both approaches are essentially correct if one considers the appropriate matrices. We will prove that (under certain mild conditions) the eigenvalues of the (normalized) Laplacian of a random power-law graph follow the semicircle law, whereas the spectrum of the adjacency matrix of a power-law graph obeys the power law. Our results are based on the analysis of random graphs with given expected degrees and their relations to several key invariants. Of interest are a number of (new) values for the exponent {beta