首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity
  • 本地全文:下载
  • 作者:Erika S. Zavaleta ; M. Rebecca Shaw ; Nona R. Chiariello
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2003
  • 卷号:100
  • 期号:13
  • 页码:7650-7654
  • DOI:10.1073/pnas.0932734100
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Biodiversity responses to ongoing climate and atmospheric changes will affect both ecosystem processes and the delivery of ecosystem goods and services. Combined effects of co-occurring global changes on diversity, however, are poorly understood. We examined plant diversity responses in a California annual grassland to manipulations of four global environmental changes, singly and in combination: elevated CO2, warming, precipitation, and nitrogen deposition. After 3 years, elevated CO2 and nitrogen deposition each reduced plant diversity, whereas elevated precipitation increased it and warming had no significant effect. Diversity responses to both single and combined global change treatments were driven overwhelmingly by gains and losses of forb species, which make up most of the native plant diversity in California grasslands. Diversity responses across treatments also showed no consistent relationship to net primary production responses, illustrating that the diversity effects of these environmental changes could not be explained simply by changes in productivity. In two- to four-way combinations, simulated global changes did not interact in any of their effects on diversity. Our results show that climate and atmospheric changes can rapidly alter biological diversity, with combined effects that, at least in some settings, are simple, additive combinations of single-factor effects.
  • 关键词:California grassland ; plant diversity ; functional groups ; global change interactions
国家哲学社会科学文献中心版权所有