期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2003
卷号:100
期号:16
页码:9274-9279
DOI:10.1073/pnas.1233544100
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Adhering cells actively probe the mechanical properties of their environment and use the resulting information to position and orient themselves. We show that a large body of experimental observations can be consistently explained from one unifying principle, namely that cells strengthen contacts and cytoskeleton in the direction of large effective stiffness. Using linear elasticity theory to model the extracellular environment, we calculate optimal cell organization for several situations of interest and find excellent agreement with experiments for fibroblasts, both on elastic substrates and in collagen gels: cells orient in the direction of external tensile strain; they orient parallel and normal to free and clamped surfaces, respectively; and they interact elastically to form strings. Our method can be applied for rational design of tissue equivalents. Moreover, our results indicate that the concept of contact guidance has to be reevaluated. We also suggest that cell-matrix contacts are up-regulated by large effective stiffness in the environment because, in this way, build-up of force is more efficient.