期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2003
卷号:100
期号:16
页码:9548-9553
DOI:10.1073/pnas.1633508100
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The microtubule (MT)-associated protein tau is important in neuronal development and in Alzheimer's and other neurodegenerative diseases. Genetic analyses have established a cause-and-effect relationship between tau dysfunction/misregulation and neuronal cell death and dementia in frontotemporal dementia and parkinsonism associated with chromosome 17; several mutations causing this dementia lead to increased ratios of four-repeat (4R) to three-repeat (3R) wild-type tau, and an attractive hypothesis is that the abnormally high ratio of 4R to 3R tau might lead to neuronal cell death by altering normal tau functions in adult neurons. Thus, we tested whether 3R and 4R tau might differentially modulate the dynamic instability of MTs in vitro using video microscopy. Although both isoforms promoted MT polymerization and decreased the tubulin critical subunit concentration to approximately similar extents, 4R tau stabilized MTs significantly more strongly that 3R tau. For example, 4R tau suppressed the shortening rate, whereas 3R tau had little or no detectable effect. Similarly, 3R tau had no effect on the length shortened during a shortening event, whereas 4R tau strongly reduced this parameter. Further, when MTs were diluted into buffer containing 4R tau, the MTs were stabilized and shortened slowly. In contrast, when diluted into 3R tau, the MTs were unstable and shortened rapidly. Thus, 4R tau stabilizes MTs differently and significantly more strongly than 3R tau. We suggest a "dosage effect" or haploinsufficiency model in which both tau alleles must be active and properly regulated to produce appropriate amounts of each tau isoform to maintain MT dynamics within a tolerable window of activity.