首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Participation of the S4 voltage sensor in the Mg2+-dependent activation of large conductance (BK) K+ channels
  • 本地全文:下载
  • 作者:Lei Hu ; Jingyi Shi ; Zhongming Ma
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2003
  • 卷号:100
  • 期号:18
  • 页码:10488-10493
  • DOI:10.1073/pnas.1834300100
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The S4 transmembrane segment is the primary voltage sensor in voltage-dependent ion channels. Its movement in response to changes in membrane potential leads to the opening of the activation gate, which is formed by a separate structural component, the S6 segment. Here we show in voltage-, Ca2+-, and Mg2+-dependent, large conductance K+ channels that the S4 segment participates not only in voltage- but also Mg2+-dependent activation. Mutations in S4 and the S4-S5 linker alter voltage-dependent activation and have little or no effect on activation by micromolar Ca2+. However, a subset of these mutations in the C-terminal half of S4 and in the S4-S5 linker either reduce or abolish the Mg2+ sensitivity of channel gating. Cysteine residues substituted into positions R210 and R213, marking the boundary between S4 mutations that alter Mg2+ sensitivity and those that do not, are accessible to a modifying reagent [sodium (2-sulfonatoethyl)methane-thiosulfonate] (MTSES) from the extracellular and intracellular side of the membrane, respectively, at -80 mV. This implies that interactions between S4 and a cytoplasmic domain may be involved in Mg2+-dependent activation. These results indicate that the voltage sensor is critical for Mg2+-dependent activation and the coupling between the voltage sensor and channel gate is a converging point for voltage- and Mg2+-dependent activation pathways.
国家哲学社会科学文献中心版权所有