期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2003
卷号:100
期号:23
页码:13259-13263
DOI:10.1073/pnas.2233626100
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Cells of Escherichia coli under conditions of certain cellular stresses excrete attractants. Cells of chemotactic strains respond to these excreted signaling molecules by moving up their local concentration gradients and forming different types of stable multicellular structures. Multicellular clusters are the simplest among these structures. Fluorescence microscopy was used to characterize the macroscopic properties of the clusters and to track individual E. coli cells in the clusters in real time. A quantitative analysis reveals that the equilibrium cluster size is only weakly dependent on the total number of cells in the cluster. The tumble frequency of an individual cell strongly depends on the position of the cell within the cluster and its direction of movement. In the central region of the cluster, tumbles are strongly suppressed whereas near the edge of the cluster, the tumble frequency is restored for exiting cells, thereby preventing them from leaving the cluster, resulting in the maintenance of sharp cluster boundaries. A simulation based on a model of the sensory memory of E. coli reproduces the experimental data and indicates that the tumble rate and consequently the morphology of the cluster are determined by the sensory memory of cells.