首页    期刊浏览 2025年04月18日 星期五
登录注册

文章基本信息

  • 标题:Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5
  • 本地全文:下载
  • 作者:Dan Liu ; Emily R. Liman
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2003
  • 卷号:100
  • 期号:25
  • 页码:15160-15165
  • DOI:10.1073/pnas.2334159100
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The transduction of taste is a fundamental process that allows animals to discriminate nutritious from noxious substances. Three taste modalities, bitter, sweet, and amino acid, are mediated by G protein-coupled receptors that signal through a common transduction cascade: activation of phospholipase C {beta}2, leading to a breakdown of phosphatidylinositol-4,5-bisphosphate (PIP2) into diacylglycerol and inositol 1,4,5-trisphosphate, which causes release of Ca2+ from intracellular stores. The ion channel, TRPM5, is an essential component of this cascade; however, the mechanism by which it is activated is not known. Here we show that heterologously expressed TRPM5 forms a cation channel that is directly activated by micromolar concentrations of intracellular Ca2+ (K1/2 = 21 {micro}M). Sustained exposure to Ca2+ desensitizes TRPM5 channels, but PIP2 reverses desensitization, partially restoring channel activity. Whole-cell TRPM5 currents can be activated by intracellular Ca2+ and show strong outward rectification because of voltage-sensitive gating of the channels. TRPM5 channels are nonselective among monovalent cations and not detectably permeable to divalent cations. We propose that the regulation of TRPM5 by Ca2+ mediates sensory activation in the taste system.
国家哲学社会科学文献中心版权所有