期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2003
卷号:100
期号:26
页码:15971-15976
DOI:10.1073/pnas.2535394100
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Chlamydia trachomatis is an obligatory intracellular prokaryotic parasite that causes a spectrum of clinically important chronic inflammatory diseases of humans. Persistent infection may play a role in the pathophysiology of chlamydial disease. Here we describe the chlamydial transcriptome in an in vitro model of IFN-{gamma}-mediated persistence and reactivation from persistence. Tryptophan utilization, DNA repair and recombination, phospholipid utilization, protein translation, and general stress genes were up-regulated during persistence. Down-regulated genes included chlamydial late genes and genes involved in proteolysis, peptide transport, and cell division. Persistence was characterized by altered but active biosynthetic processes and continued replication of the chromosome. On removal of IFN-{gamma