首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Decreased expression of Cu–Zn superoxide dismutase 1 in ants with extreme lifespan
  • 本地全文:下载
  • 作者:Joel D. Parker ; Karen M. Parker ; Barbara H. Sohal
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2004
  • 卷号:101
  • 期号:10
  • 页码:3486-3489
  • DOI:10.1073/pnas.0400222101
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Reactive oxygen species, the by-products of oxidative energy metabolism, are considered a main proximate cause of aging. Accordingly, overexpression of the enzyme Cu-Zn superoxide dismutase 1 (SOD1) can lengthen lifespan of Drosophila melanogaster in the laboratory. However, the role of SOD1 as a main determinant of lifespan has been challenged on the grounds that overexpression might be effective only in compromised genetic backgrounds. Moreover, interspecific comparisons show lower levels of antioxidant activities in longer-lived species, suggesting that life-span extension may evolve through less reactive oxygen species generation from the mitochondria rather than higher expression of SOD1. The tremendous variation in lifespan between ant castes, ranging over 2 orders of magnitude, coupled with the fact that all individuals share the same genome, provides a system to investigate the role of SOD1 in the wild. We used the ant Lasius niger as a model system, because queens can reach the extreme age of 28 years, whereas workers and males live only 1-2 years and a few weeks, respectively. We cloned SOD1 and found that long-lived queens have a lower level of expression than workers and males. Specific enzyme-activity assays also showed higher SOD1 activity levels in males and workers compared with queens, which had SOD1 activity levels similar to that of D. melanogaster. Altogether, these data show that increased expression of SOD1 is not required for the evolution of extreme lifespan, even in a system in which differential gene expression is the only way to express phenotypes with great lifespan differences.
国家哲学社会科学文献中心版权所有