首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Metagenes and molecular pattern discovery using matrix factorization
  • 本地全文:下载
  • 作者:Jean-Philippe Brunet ; Pablo Tamayo ; Todd R. Golub
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2004
  • 卷号:101
  • 期号:12
  • 页码:4164-4169
  • DOI:10.1073/pnas.0308531101
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:We describe here the use of nonnegative matrix factorization (NMF), an algorithm based on decomposition by parts that can reduce the dimension of expression data from thousands of genes to a handful of metagenes. Coupled with a model selection mechanism, adapted to work for any stochastic clustering algorithm, NMF is an efficient method for identification of distinct molecular patterns and provides a powerful method for class discovery. We demonstrate the ability of NMF to recover meaningful biological information from cancer-related microarray data. NMF appears to have advantages over other methods such as hierarchical clustering or self-organizing maps. We found it less sensitive to a priori selection of genes or initial conditions and able to detect alternative or context-dependent patterns of gene expression in complex biological systems. This ability, similar to semantic polysemy in text, provides a general method for robust molecular pattern discovery.
国家哲学社会科学文献中心版权所有