首页    期刊浏览 2024年07月19日 星期五
登录注册

文章基本信息

  • 标题:Isolation of an endotoxin–MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations
  • 本地全文:下载
  • 作者:Theresa L. Gioannini ; Athmane Teghanemt ; DeSheng Zhang
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2004
  • 卷号:101
  • 期号:12
  • 页码:4186-4191
  • DOI:10.1073/pnas.0306906101
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Host proinflammatory responses to minute amounts of endotoxins derived from many Gram-negative bacteria require the interaction of lipopolysaccharide-binding protein (LBP), CD14, Toll-like receptor 4 (TLR4) and MD-2. Optimal sensitivity to endotoxin requires an ordered series of endotoxin-protein and protein-protein interactions. At substoichiometric concentrations, LBP facilitates delivery of endotoxin aggregates to soluble CD14 (sCD14) to form monomeric endotoxin-sCD14 complexes. Subsequent interactions of endotoxin-sCD14 with TLR4 and/or MD-2 have not been specifically defined. This study reports the purification of a stable, monomeric, bioactive endotoxin-MD-2 complex generated by treatment of endotoxin-sCD14 with recombinant MD-2. Efficient generation of this complex occurred at picomolar concentrations of endotoxin and nanogram per milliliter doses of MD-2 and required presentation of endotoxin to MD-2 as a monomeric endotoxin-CD14 complex. TLR4-dependent delivery of endotoxin to human embryonic kidney (HEK) cells and cell activation at picomolar concentrations of endotoxin occurred with the purified endotoxin-MD-2 complex, but not with purified endotoxin aggregates with or without LBP and/or sCD14. The presence of excess MD-2 inhibited delivery of endotoxin-MD-2 to HEK/TLR4 cells and cell activation. These findings demonstrate that TLR4-dependent activation of host cells by picomolar concentrations of endotoxin occurs by sequential interaction and transfer of endotoxin to LBP, CD14, and MD-2 and simultaneous engagement of endotoxin and TLR4 by MD-2.
国家哲学社会科学文献中心版权所有