期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2004
卷号:101
期号:14
页码:5123-5128
DOI:10.1073/pnas.0307711101
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The hyperpolarization-activated cation current (Ih) plays an important role in determining membrane potential and firing characteristics of neurons and therefore is a potential target for regulation of intrinsic excitability. Here we show that an increase in AMPA-receptor-dependent synaptic activity induced by {alpha}-latrotoxin or glutamate application as well as direct depolarization results in an increase in Ih recorded from cell-attached patches in hippocampal CA1 pyramidal neurons. This mechanism requires Ca2+ influx but not increased levels of cAMP. Artificially increasing Ih by using a dynamic clamp during whole-cell current clamp recordings results in reduced firing rates in response to depolarizing current injections. We conclude that modulation of somatic Ih represents a previously uncharacterized mechanism of homeostatic plasticity, allowing a neuron to control its excitability in response to changes in synaptic activity on a relatively short-term time scale.