期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2004
卷号:101
期号:16
页码:6279-6284
DOI:10.1073/pnas.0308742101
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Ca2+/calmodulin (CaM)-dependent phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) initiates smooth muscle contraction and regulates actomyosin-based cytoskeletal functions in nonmuscle cells. The net extent of RLC phosphorylation is controlled by MLCK activity relative to myosin light chain phosphatase activity. We have constructed a CaM-sensor MLCK where Ca2+-dependent CaM binding increases the catalytic activity of the kinase domain, whereas coincident binding to the biosensor domain decreases fluorescence resonance energy transfer between two fluorescent proteins. We have created transgenic mice expressing this construct specifically in smooth muscle cells to perform real-time evaluations of the relationship between smooth muscle contractility and MLCK activation in intact tissues and organs. Measurements in intact bladder smooth muscle demonstrate that MLCK activation increases rapidly during KCl-induced contractions but is not maximal, consistent with a limiting amount of cellular CaM. Carbachol treatment produces the same amount of force development and RLC phosphorylation, with much smaller increases in [Ca2+]i and MLCK activation. A Rho kinase inhibitor suppresses RLC phosphorylation and force but not MLCK activation in carbachol-treated tissues. These observations are consistent with a model in which the magnitude of an agonist-mediated smooth muscle contraction depends on a rapid but limited Ca2+/CaM-dependent activation of MLCK and Rho kinase-mediated inhibition of myosin light chain phosphatase activity. These studies demonstrate the feasibility of producing transgenic biosensor mice for investigations of signaling processes in intact systems.