首页    期刊浏览 2025年02月18日 星期二
登录注册

文章基本信息

  • 标题:Cells have distinct mechanisms to maintain protection against different reactive oxygen species: Oxidative-stress-response genes
  • 本地全文:下载
  • 作者:Geoffrey W. Thorpe ; Chii S. Fong ; Nazif Alic
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2004
  • 卷号:101
  • 期号:17
  • 页码:6564-6569
  • DOI:10.1073/pnas.0305888101
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The complete set of viable deletion strains in Saccharomyces cerevisiae was screened for sensitivity of mutants to five oxidants to identify cell functions involved in resistance to oxidative stress. This screen identified a unique set of mainly constitutive functions providing the first line of defense against a particular oxidant; these functions are very dependent on the nature of the oxidant. Most of these functions are distinct from those involved in repair and recovery from damage, which are generally induced in response to stress, because there was little correlation between mutant sensitivity and the reported transcriptional response to oxidants of the relevant gene. The screen identified 456 mutants sensitive to at least one of five different types of oxidant, and these were ranked in order of sensitivity. Many genes identified were not previously known to have a role in resistance to reactive oxygen species. These encode functions including protein sorting, ergosterol metabolism, autophagy, and vacuolar acidification. Only two mutants were sensitive to all oxidants examined, only 12 were sensitive to at least four, and different oxidants had very different spectra of deletants that were sensitive. These findings highlight the specificity of cellular responses to different oxidants: No single oxidant is representative of general oxidative stress. Mitochondrial respiratory functions were overrepresented in mutants sensitive to H2O2, and vacuolar protein-sorting mutants were enriched in mutants sensitive to diamide. Core functions required for a broad range of oxidative-stress resistance include transcription, protein trafficking, and vacuolar function.
国家哲学社会科学文献中心版权所有