期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2004
卷号:101
期号:21
页码:7907-7912
DOI:10.1073/pnas.0401309101
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:We report the computational design of soluble protein receptors for pinacolyl methyl phosphonic acid (PMPA), the predominant hydrolytic product of the nerve agent soman. Using recently developed computational protein design techniques, the ligand-binding pockets of two periplasmic binding proteins, glucose-binding protein and ribose-binding protein, were converted to bind PMPA instead of their cognate sugars. The designs introduce 9-12 mutations in the parent proteins. Twelve of 20 designs tested exhibited PMPA-dependent changes in emission intensity of a fluorescent reporter with affinities between 45 nM and 10 {micro}M. The contributions to ligand binding by individual residues were determined in two designs by alanine-scanning mutagenesis, and are consistent with the molecular models. These results demonstrate that designed receptors with radically altered binding specificities and affinities that rival or exceed those of the parent proteins can be successfully predicted. The designs vary in parent scaffold, sequence diversity, and orientation of docked ligand, suggesting that the number of possible solutions to the design problem is large and degenerate. This observation has implications for the genesis of biological function by random processes. The designed receptors reported here may have utility in the development of fluorescent biosensors for monitoring nerve agents.
关键词:computational protein design ; fluorescent biosensor