首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:MotifPrototyper: A Bayesian profile model for motif families
  • 本地全文:下载
  • 作者:Eric P. Xing ; Richard M. Karp
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2004
  • 卷号:101
  • 期号:29
  • 页码:10523-10528
  • DOI:10.1073/pnas.0403564101
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:In this article, we address the problem of modeling generic features of structurally but not textually related DNA motifs, that is, motifs whose consensus sequences are entirely different but nevertheless share "metasequence features" reflecting similarities in the DNA-binding domains of their associated protein recognizers. We present MotifPrototyper, a profile Bayesian model that can capture structural properties typical of particular families of motifs. Each family corresponds to transcription regulatory proteins with similar types of structural signatures in their DNA-binding domains. We show how to train MotifPrototypers from biologically identified motifs categorized according to the TRANSFAC categorization of transcription factors and present empirical results of motif classification, motif parameter estimation, and de novo motif detection by using the learned profile models.
  • 关键词:mixture model ; Dirichlet density ; hidden Markov model ; classification ; semi-unsupervised learning
国家哲学社会科学文献中心版权所有