首页    期刊浏览 2025年04月25日 星期五
登录注册

文章基本信息

  • 标题:Sites of proteolytic processing and noncovalent association of the distal C-terminal domain of CaV1.1 channels in skeletal muscle
  • 本地全文:下载
  • 作者:Joanne T. Hulme ; Keiichi Konoki ; Teddy W.-C. Lin
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2005
  • 卷号:102
  • 期号:14
  • 页码:5274-5279
  • DOI:10.1073/pnas.0409885102
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:In skeletal muscle cells, voltage-dependent potentiation of Ca2+ channel activity requires phosphorylation by cAMP-dependent protein kinase (PKA) anchored via an A-kinase anchoring protein (AKAP15), and the most rapid sites of phosphorylation are located in the C-terminal domain. Surprisingly, the site of interaction of the complex of PKA and AKAP15 with the {alpha}1-subunit of CaV1.1 channels lies in the distal C terminus, which is cleaved from the remainder of the channel by in vivo proteolytic processing. Here we report that the distal C terminus is noncovalently associated with the remainder of the channel via an interaction with a site in the proximal C-terminal domain when expressed as a separate protein in mammalian nonmuscle cells. Deletion mapping of the C terminus of the {alpha}1-subunit using the yeast two-hybrid assay revealed that a distal C-terminal peptide containing amino acids 1802-1841 specifically interacts with a region in the proximal C terminus containing amino acid residues 1556-1612. Analysis of the purified {alpha}1-subunit of CaV1.1 channels from skeletal muscle by saturation sequencing of the intracellular peptides by tandem mass spectrometry identified the site of proteolytic processing as alanine 1664. Our results support the conclusion that a noncovalently associated complex of the {alpha}1-subunit truncated at A1664 with the proteolytically cleaved distal C-terminal domain, AKAP15, and PKA is the primary physiological form of CaV1.1 channels in skeletal muscle cells.
  • 关键词:calcium channels ; contraction coupling ; excitation ; protein kinase ; proteolysis
国家哲学社会科学文献中心版权所有