首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Memory T cells have gene expression patterns intermediate between naïve and effector
  • 本地全文:下载
  • 作者:Susan Holmes ; Michael He ; Tong Xu
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2005
  • 卷号:102
  • 期号:15
  • 页码:5519-5523
  • DOI:10.1073/pnas.0501437102
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The biological basis underlying differentiation of naive (NAI) T cells into effector (EFFE) and memory (MEM) cells is incompletely understood. Furthermore, whether NAI T cells serially differentiate into EFFE and then MEM cells (linear differentiation) or whether they concurrently differentiate into either EFFE or MEM cells (parallel differentiation) remains unresolved. We isolated NAI, EFFE, and MEM CD8+ T cell subsets from human peripheral blood and analyzed their gene expression by using microarrays. We identified 156 genes that strongly differentiate NAI, EFFE, and MEM CD8+ T cells; these genes provide previously unrecognized markers to help identify each cell type. Using several statistical approaches to analyze and group the data (standard heat-map and hierarchical clustering, a unique circular representation, multivariate analyses based on principal components, and a clustering method based on phylogenetic parsimony analysis), we assessed the lineage relationships between these subsets and showed that MEM cells have gene expression patterns intermediate between NAI and EFFE T cells. Our analysis suggests a common differentiation pathway to an intermediate state followed by a split into EFFE or MEM cells, hence supporting the parallel differentiation model. As such, conditions under which NAI T cells are activated may determine the magnitude of both EFFE and MEM cells, which arise subsequently. A better understanding of these conditions may be very useful in the design of future vaccine strategies to maximize MEM cell generation.
  • 关键词:CD8+ T cells ; phylogeny ; microarray analysis ; lineage relationship ; differentiation
国家哲学社会科学文献中心版权所有