首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:STIM protein coupling in the activation of Orai channels
  • 本地全文:下载
  • 作者:Youjun Wang ; Xiaoxiang Deng ; Yandong Zhou
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2009
  • 卷号:106
  • 期号:18
  • 页码:7391-7396
  • DOI:10.1073/pnas.0900293106
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:STIM proteins are sensors of endoplasmic reticulum (ER) luminal Ca2+ changes and rapidly translocate into near plasma membrane (PM) junctions to activate Ca2+ entry through the Orai family of highly Ca2+-selective "store-operated" channels (SOCs). Dissecting the STIM-Orai coupling process is restricted by the abstruse nature of the ER-PM junctional domain. To overcome this problem, we studied coupling by using STIM chimera and cytoplasmic C-terminal domains of STIM1 and STIM2 (S1ct and S2ct) and identifying a fundamental action of the powerful SOC modifier, 2-aminoethoxydiphenyl borate (2-APB), the mechanism of which has eluded recent scrutiny. We reveal that 2-APB induces profound, rapid, and direct interactions between S1ct or S2ct and Orai1, effecting full Ca2+ release-activated Ca2+ (CRAC) current activation. The short 235-505 S1ct coiled-coil region was sufficient for functional Orai1 coupling. YFP-tagged S1ct or S2ct fragments cleared from the cytosol seconds after 2-APB addition, binding avidly to Orai1-CFP with a rapid increase in FRET and transiently increasing CRAC current 200-fold above basal levels. Functional S1ct-Orai1 coupling occurred in STIM1/STIM2-/- DT40 chicken B cells, indicating ct fragments operate independently of native STIM proteins. The 2-APB-induced S1ct-Orai1 and S2-ct-Orai1 complexes undergo rapid reorganization into discrete colocalized PM clusters, which remain stable for >100 s, well beyond CRAC activation and subsequent deactivation. In addition to defining 2-APB's action, the locked STIMct-Orai complex provides a potentially useful probe to structurally examine coupling.
  • 关键词:calcium signaling ; DT40 cells ; CRAC channel
国家哲学社会科学文献中心版权所有