期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2009
卷号:106
期号:19
页码:7792-7797
DOI:10.1073/pnas.0813056106
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Archaeal DNA replication machinery represents a core version of that found in eukaryotes. However, the proteins essential for the coordination of origin selection and the functioning of DNA polymerase have not yet been characterized in archaea, and they are still being investigated in eukaryotes. In the current study, the Orc1/Cdc6 (SsoCdc6) proteins from the crenarchaeon Sulfolobus solfataricus were found to physically interact with its DNA polymerase B1 (SsoPolB1). These SsoCdc6 proteins stimulated the DNA-binding ability of SsoPolB1 and differentially regulated both its polymerase and nuclease activities. Furthermore, the proteins also mutually regulated their interactions with SsoPolB1. In addition, SsoPolB1c467, a nuclease domain-deleted mutant of SsoPolB1 defective in DNA binding, retains the ability to physically interact with SsoCdc6 proteins. Its DNA polymerase activity could be stimulated by these proteins. We report on a linkage between the initiator protein Orc1/Cdc6 and DNA polymerase in the archaeon. Our present and previous findings indicate that archaeal Orc1/Cdc6 proteins could potentially play critical roles in the coordination of origin selection and cell-cycle control of replication.