首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Controls on development and diversity of Early Archean stromatolites
  • 本地全文:下载
  • 作者:Abigail C. Allwood ; John P. Grotzinger ; Andrew H. Knoll
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2009
  • 卷号:106
  • 期号:24
  • 页码:9548-9555
  • DOI:10.1073/pnas.0903323106
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The {approx}3,450-million-year-old Strelley Pool Formation in Western Australia contains a reef-like assembly of laminated sedimentary accretion structures (stromatolites) that have macroscale characteristics suggestive of biological influence. However, direct microscale evidence of biology--namely, organic microbial remains or biosedimentary fabrics--has to date eluded discovery in the extensively-recrystallized rocks. Recently-identified outcrops with relatively good textural preservation record microscale evidence of primary sedimentary processes, including some that indicate probable microbial mat formation. Furthermore, we find relict fabrics and organic layers that covary with stromatolite morphology, linking morphologic diversity to changes in sedimentation, seafloor mineral precipitation, and inferred microbial mat development. Thus, the most direct and compelling signatures of life in the Strelley Pool Formation are those observed at the microscopic scale. By examining spatiotemporal changes in microscale characteristics it is possible not only to recognize the presence of probable microbial mats during stromatolite development, but also to infer aspects of the biological inputs to stromatolite morphogenesis. The persistence of an inferred biological signal through changing environmental circumstances and stromatolite types indicates that benthic microbial populations adapted to shifting environmental conditions in early oceans.
  • 关键词:microbe ; paleontology ; biosignature ; carbonate ; reef
国家哲学社会科学文献中心版权所有